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Abstract. We consider one-dimensional (1D) interacting spinless fermions with a non-linear spectrum in a
clean quantum wire (non-linear bosonization). We compute diagrammatically the 1D dynamical structure
factor, S(ω, q), beyond the Tomonaga approximation focusing on it’s tails, |ω| � vq, i.e. the 2-pair excita-
tion continuum due to forward scattering. Our methodology reveals three classes of diagrams: two “chiral”
classes which bring divergent contributions in the limits ω → ±vq, i.e. near the single-pair excitation con-
tinuum, and a “mixed” class (so-called Aslamasov-Larkin or Altshuler-Shklovskii type diagrams) which is
crucial for the f-sum rule to be satisfied. We relate our approach to the T = 0 ones present in the literature.
We also consider the T �= 0 case and show that the 2-pair excitation continuum dominates the single-pair
one in the range: |q|T/kF � ω∓vq � T (substantial for q � kF ). As applications we first derive the small-
momentum optical conductivity due to forward scattering: σ ∼ 1/ω for T � ω and σ ∼ T/ω2 for T � ω.
Next, within the 2-pair excitation continuum, we show that the attenuation rate of a coherent mode of
dispersion Ωq crosses over from γq ∝ Ωq (q/kF )2, e.g. γq ∼ |q|3 for an acoustic mode, to γq ∝ T (q/kF )2,
independent of Ωq, as temperature increases. Finally, we show that the 2-pair excitation continuum yields
subleading curvature corrections to the electron-electron scattering rate: τ−1 ∝ V 2T + V 4 T 3/ε2F , where
V is the dimensionless strength of the interaction.

PACS. 71.10.-w Theories and models of many-electron systems – 71.10.Pm Fermions in reduced dimen-
sions (anyons, composite fermions, Luttinger liquid, etc.)

1 Introduction

In 1933, Bloch [1] suggested that the low-energy exci-
tations of an assembly of Fermi particles could be de-
scribed in terms of “sound waves”. Some years latter
Tomonaga [2] provided a proof to Bloch’s conjecture in
the one-dimensional (1D) case. His demonstration was
mainly [3] based on the linearization of the single-particle
fermionic spectrum, ξ±k = ±v(k ∓ kF ), where ±kF are
the Fermi points, ± correspond to the chiralities of the
fermions: + for right-movers near +kF , − for left-movers
near −kF and v the sound-wave velocity. On the ba-
sis of an equivalent model, of (1 + 1) dimensional Dirac
fermions, Luttinger [4] emphasized the non-Fermi liquid
nature of 1D interacting fermions, i.e. the absence of
fermionic quasi-particles. The relevancy of sound-waves
of velocity v, as the correct low-energy (bosonic) quasi-
particles (actually: particle-hole pairs), is reflected in the
expression for the polarization operator, which reads:

Π0
±(iω, q) = ± 1

2π

q

iω ∓ vq
, Π0(iω, q) =

1
πv

(vq)2

(iω)2 − (vq)2
,
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where Π0(iω, q) = Π0
+(iω, q) + Π0

−(iω, q). The imaginary
part of the retarded polarization operator defines the dy-
namical structure factor (DSF):

S(ω, q) = −�ΠR(ω, q) = −�ΠR
+(ω, q) −�ΠR

−(ω, q). (1)

For non-interacting fermions, in the linear spectrum ap-
proximation, equation (1) reads:

S0(ω, q) =
1
v

(vq)2 δ[ω2 − (vq)2], (2)

which is a delta function centered around the spectrum
ω = ±vq of the bosons. This result implies that these
bosons have an infinite life-time and are free. Tomonaga
has further shown that this result is valid in any order
in the interaction among the fermions. Diagrammatically,
this statement follows from the loop-cancellation theorem,
which states that the fermionic loop with two external
lines is the only non-zero one. That is, the sum of all
loops with 3 or more external lines is zero, cf. Ward iden-
tities due to Dzyaloshinskii and Larkin [5] which imply
that the RPA is exact. Interactions therefore do not affect
the coherent states to all orders which is the essence of
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the (non-perturbative in interactions) bosonization tech-
nique [6]. The Tomonaga-Luttinger model together with
the bosonization technique are the standard model and
technique used to tackle a wide range of problems re-
lated to 1D interacting fermions, see the recent mono-
graphes [7,8].

Many solid-state problems require going beyond the
Tomonaga approximation which assumes that fermions
are of the Dirac-type with a “light” velocity, v. This
amounts to take into account the fundamental feature of
electrons in solids: band curvature, which should manifest
at high enough energies (temperature, frequency, etc.).
Within a fermionic approach this amounts to consider bare
fermionic Green’s functions of the form:

G0
±(iε, k) =

1
iε − ξ±k

, ξ±k = ±vk +
k2

2m
, (3)

where the single particle fermionic spectrum has been ex-
panded up to second order near the Fermi points ±kF ;
here and below: k ≡ k ∓ kF . The academic problem of
non-linear bosonization probably dates back to the times
of references [2,5,6] and, since then, has attracted increas-
ing attention, especially during the last decade or so, both
in the field of the solid-state and in the more mathemat-
ically inclined literature, e.g. see references [9–17]. This
increase of focus on curvature effects is a witness of both
their relevancy to contemporary physical applications as
well as their complicated technical handling which delayed
their quantitative analysis. The main physical motivations
are related to the attenuation of 1D plasmons [11,15–17],
small-momentum drag resistivity between quantum wires
[12] and shocks in 1D quantum waves associated with the
gradient catastrophe of the corresponding non-linear par-
tial differential equations as proposed in [13]. Such phe-
nomena do not manifest in the Tomonaga approximation.
In particular, quantitative approaches to plasmon attenu-
ation and small-momentum drag resistivity require a pre-
cise knowledge of the density-density correlation function
and its dissipative part: the DSF, beyond the TL approxi-
mation; a major focus of this contribution. In this respect,
the technical challenge is in handling the combined effects
of curvature and interactions for this standard object. As
has been shown above interactions alone can be taken into
account straightforwardly by the bosonization technique
in the Tomonaga-Luttinger model. The opposite limit of
free-fermions is also worth considering because it allows
a straightforward handling of band curvature and reveals
some of its non-trivial features. The free-fermion polariza-
tion operator (at T = 0) with curvature reads:

Π0(iω, q) =
m

2πq
ln

[
(iω)2 − (ω−)2

(iω)2 − (ω+)2

]
, (4a)

S0(ω, q) =
m

2|q|
[
θ

[
mv

q
(ω − ω−)

]
− θ

[
mv

q
(ω − ω+)

]]

− {ω → −ω}, (4b)

where the 2-parametric family appears:

ω±(q) = vq ± q2

2m
. (5)

ω

q2kFq � 2kF

S0 = 0

S(2) �= 0

S0(ω, q) �= 0

ω+(q)

ω−(q)

Fig. 1. Schematic view on the spectrum of excitations of 1D
fermions. The free-fermion, or single-pair excitation continuum
S0, lies between the ω− and ω+ branches. Because of strong
energy-momentum constraints in 1D the dynamical structure
factor is zero below the ω− branch (at finite temperature an
exponentially small tail appears). We will focus on the multi-
pair excitation continuum, which spreads above the ω+ branch,
at the 2-pair level, S(2).

Equation (4b) shows explicitly that the DSF satisfies [18]:
S(ω, q) = −S(−ω, q), S(ω, q) = S(ω,−q), together with
the f-sum rule:

∫ ∞

0

dω ω S(ω, q) = v
q2

2π
, (6)

where the right-hand side in m-independent.
Curvature of the spectrum resulting from a finite mass,

m, broadens the delta-function singularities in the range
of frequencies: ω− < ω < ω+ around vq and −ω+ < ω <
−ω− around −vq. This yields a non-trivial spectrum of
excitation, cf. Figure 1. The DSF therefore consists of
two boxes centered around: ω = ±vq, each box having
a width δω = |ω+ − ω−| = q2/m and a hight ±m/2|q|
(+ sign for right-movers and — sign for left-movers). No-
tice that at non-zero temperatures the Heaviside func-
tions θ(x), in equation (4b), become the Fermi occupa-
tion functions nF (x). At high temperatures, T � v|q|,
the latter become the Boltzmann distribution functions
which decay exponentially for ω − v|q| � |q|T/kF (we
have used the fact that kF = mv) providing some tails
to the DSF. By definition, the T = 0 (non-analytic)
boxes and the T �= 0 (smooth) tails correspond to the
incoherent single-pair excitation continuum whereby a co-
herent mode (e.g. the plasmon at ω = vq) decays by
emitting a single particle-hole pair, see [19] for a review.
The total width of the single-pair excitation continuum:
δω = |ω+ − ω−| = q2/m + |q|T/kF , corresponds to the
decay rate of the plasmons in the free-fermion case. When
m → ∞ this decay rate goes to zero and the plasmons are
again free in accordance with the Tomonaga-Luttinger re-
sult.

More non-trivial effects on the shape of the DSF are
expected from interactions among fermions, cf. Figure 2.
At the text-book level, it is known that interactions yield
an additional multi-pair excitation tail to the DSF, see
[19]. In 1D such a continuum can appear only above the
|ω+|-branch due to strong energy-momentum constraints,
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S(ω, q)

ωω−(q) vq ω+(q)

Single-pair excitations

Multi-pair

excitations

Fig. 2. Schematic view on the dynamical structure factor
as a function of frequency ω for a given momentum q and at
finite temperatures, e.g. the cut at q � 2kF of Figure 1. The
free-fermion or single-pair excitation continuum lies between
the ω− and ω+ branches. The 2- and higher-pair excitation
continuum due to interactions lie beyond the ω+ branch. We
will focus on the 2-pair excitation continuum, ω � ω+. Effects
of interactions below ω+ are not represented.

see [7], i.e. there is no dissipation below the |ω−|-branch.
In this frame, the authors of reference [12] have given an
expression for the zero-temperature 2-pair excitation tail
with the help of a fermion amplitude technique and related
it to the small-momentum drag resistivity between quan-
tum wires. More recently, the authors of reference [17]
have derived the zero-temperature 2-pair excitation tail
and generalized it to all interaction strengths (full multi-
pair excitation continuum) with the help of a spin-1/2
Heisenberg chain model (equivalent to spinless fermions,
see [7,8]) and its related bosonic representation. In this
contribution, we also consider the 2-pair excitation con-
tinuum and generalize it to non-zero temperatures by us-
ing diagrammatics which we think brings another different
and interesting approach to the problem. We further apply
our results to the computation of the optical conductiv-
ity, the damping rate of coherent excitations and to the
electron-electron scattering rate. In each case, we attempt
to firmly ground the relevancy of our methodology and re-
sults as well as compare them with the ones known from
the literature on the subject.

The paper is structured as follows. In Section 2 we jus-
tify the diagrammatic approach to the problem of the tails
and deliver the results obtained with the help of this tech-
nique. In Section 3 we apply such results to the calculation
of the optical conductivity, the Landau damping rate of
a coherent excitation and the electron-electron scattering
rate. In Section 4 we provide the reader with a demon-
stration of the results of Section 2. The conclusion and
outlook are given in Section 5.

2 Diagrammatic approach

2.1 Motivation

The major difficulty arising from diagrammatics is that
the interplay between curvature and interactions leads to
the breakdown of the loop cancellation theorem, a sub-
stantial technical complication as diagrams beyond the

RPA are generated. Even though difficult to re-sum, we
think this approach provides a rather systematic and con-
trolled way to compute correlation functions. The basic
reason behind this statement is the fact that the fermionic
approach takes fully into account of the 2-parametric fam-
ily {ω−, ω+}, cf. equation (5). On the other hand, (linear)
bosonization maps this family to the single-parametric
one, i.e. the bosons of Bloch. In order to emulate a
2-parametric family from a single one, within bosoniza-
tion, non-linear terms have to be added to the usual
bosonized action, e.g. (∂xϕ)3 in [11] for fermion curva-
ture and (∂tϕ)4 in [20] for phonon curvature. This is
what makes the bosonization non-linear. It turns out that
these terms are highly singular even at the second or-
der of perturbation theory in curvature (singularity of
the δ(0)−type, cf. [11,20]). This singularity signals that
Bloch’s “sound” is highly non-trivial as it corresponds to
the merging of two branches. The price to pay is the need
to rely on a self-consistent approximation to cure the sin-
gular perturbation theory, cf. [11,20]. Once this is done
interactions may be taken into account in all orders which
allows to explore some non-perturbative features of the
interacting fermions. For example, it has been shown in
reference [11] that the T = 0 decay rate of the plasmons
reads: γq ∝ q2/m∗, where m∗ is renormalized by the in-
teractions among the fermions and goes to the band mass
m when interactions are switched off (in agreement with
the free-fermion case). On the other hand, sharp features
of the DSF, e.g. the (smooth) multi-particle tail which
transits to a (non-analytic) box-like shaped continuum in
the T = 0 free-fermion limit, are not clearly revealed by
the self-consistent approximation, as far as we could learn
from reference [11]. These issues seem to have been re-
solved in reference [17]. As for our concerns, the advantage
of the diagrammatic technique is precisely in that it avoids
the self-consistent approximation. Moreover, it is partic-
ularly well suited for the computation of the 2-pair exci-
tation tail (the decay of high-frequency coherent modes
into 2 particle-hole pairs) as the latter is fully determined
by a second-order perturbation theory in the interaction
among the fermions. Finally, if re-summed correctly, it
would even allow to explore non-perturbative features of
the fermions and thus be fully complementary to the self-
consistent non-linear bosonization of reference [11].

2.2 Model

Given this important justification regarding our working
tool, the simplest model which captures the interplay be-
tween curvature and interactions is the one of spinless
fermions interacting with the g2 process, i.e. right-moving
(+) fermions scattering on left-moving (−) fermions and
vice-versa. This model neglects the g4- process [21] as
well as the g3- or Umklapp process, so we are away from
half-filling, see reference [17] for a more complete theory.
Within this model, curvature is fully taken into account
while interactions are treated perturbatively. In the sec-
ond order 10 diagrams arise, cf. Figure 3. These diagrams
are well-known and one can check, from Figure 3, that
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Fig. 3. The 2nd order contributions to the polarization oper-
ator of spinless fermions interacting with the g2 process, i.e. +
fermions scattering on −fermions and vice-versa. They are di-
vided into three classes: two “chiral” classes (R and L) and one
“mixed” class (M). All these diagrams correspond to the decay
of a density fluctuation, {ω, q}, into two particle-hole pair exci-
tations. They describe the microscopic scattering mechanisms
taking place within the 2-pair excitation continuum.

they indeed correspond to the decay of a density fluctua-
tion, {ω, q}, into two particle-hole pair excitations. They
may be divided into three classes: two “chiral” classes (R
and L) and one “mixed” class (M); this terminology will
be justified a bit latter. Diagrams R1, R2, L1 and L2 cor-
respond to the re-normalization of a particle line. Dia-
grams R3 and L3 to a vertex correction. Diagrams M1
and M2 (which appear with a factor of two) are known in
the theory of superconductivity as the Aslamasov-Larkin
diagrams and in mesoscopics as the Altshuler-Shklovskii
diagrams. To the knowledge of the author, these diagrams
have not been computed for 1D fermions with mass. In 3D,
the calculation was done by DuBois and Kivelson [22] and
in 2D by Mishchenko et al. following the work of Reizer
and Vinokur [23]. As previously mentioned, in 1D, the
only fermionic approach we are aware of is the one of ref-
erence [12] concerning the tails of the DSF. However, the
expression of the tails given in reference [12] is based on
summing fermion amplitudes. This procedure generates R
and L diagrams but neglects M diagrams. As we will show
in the following, M diagrams are crucial to derive the tails,
i.e. they bring some cancellations with L and R diagrams
which correctly enforce the satisfaction of the f-sum rule,
equation (6). Given these methodological considerations,
our final T = 0 result agrees with the one of [12] and of
the more recent [17]. We now outline our main results.

2.3 Results

(1) We consider first the case m → ∞. From the loop
cancellation theorem, the sum of all diagrams should be
zero. We find that the combinations: R1 + R2 + R3, L1 +

L2+L3 and M1+M2, vanish in this limit. This implies that
all R diagrams contribute equally, as well as all L diagrams
and both M diagrams. Instead of working with individual
diagrams we therefore work with the above combinations.

(2) We consider then right- and left-movers with
curved spectrum. Working with the combinations of di-
agrams defined in 1), which vanish in the case of a linear
spectrum, we implement a systematic expansion in 1/m.
We prove that diagrams R1+R2+R3 have an expansion in
1/m2

+, diagrams L1+L2+L3 have an expansion in 1/m2−
and diagrams M1 + M2 have an expansion in 1/m+m−
(m+ and m− being the masses of right- and left-movers,
respectively). This justifies the denomination of R and L
diagrams as chiral diagrams and M diagrams as mixed
diagrams (they mix the chiralities of the fermions).

(3) We focus on the lowest order in the above 1/m ex-
pansion. This amounts to focus on the tails of the DSF,
|ω| � vq. The arguments of (2) show that the tails pro-
vided by R (resp. L) diagrams correspond to the scattering
of a curved right- (resp. left-) mover on a linear left- (resp.
right-) mover. On the other hand the tails of the mixed
diagrams require the scattering of two curved fermions
with different chiralities. This can be easily seen from our
general results which read:

�Π
(2)R
R (ω, q) = − |V [ω−vq

2 ]|2
256πv5

q2

m2
+

ω + vq

ω − vq
F(T ; ω, q)

− {ω → −ω, q → −q} , (7a)

�Π
(2)R
L (ω, q) = − |V [ω+vq

2 |2
256πv5

q2

m2−

ω − vq

ω + vq
F(T ; ω, q)

− {ω → −ω, q → −q} , (7b)

�Π
(2)R
M (ω, q) = +

V [ω+vq
2 ]V [ω−vq

2 ]
256πv5

2q2

m+m−
F(T ; ω, q)

− {ω → −ω, q → −q} , (7c)

where �Π
(2)R
η (ω, q) is the sum of all diagrams in the given

class η = R, L, M and the temperature factor reads:

F(T ; ω, q) =
1

1 − e−
ω−vq
2T

− 1

1 − e
ω+vq
2T

. (8)

(4) We first comment on the effect of the long-range
potential V [q]. As these expressions are valid for the tails
of the correlation function, |ω| � vq, the interaction po-
tential factorizes and brings a contribution: |V [ω/2]|2. The
three groups of diagrams (R, L and M) therefore cannot
be discriminated by the inclusion of a long-range poten-
tial as far as the tails are concerned. Notice, however, that
the long-range static Coulomb interaction acquires a dy-
namical nature depending on the external frequency, ω.
This dependence provides further ω-tails to the dynamical
structure factor. Actually, for a realistic three-dimensional
Coulomb interaction we have: V (q) = −e2 ln(|q|a), where
a is a short distance cut-off. Therefore, the long-range 3D
Coulomb potential provides an additional frequency de-
pendence: |V [ω/2]|2 = e4 ln2(|ω|a/2v), which is marginal.

(5) Next we comment on the effect of temperature. No-
tice that the temperature factor of equation (8) is common



S. Teber: Tails of the DSf of 1D spinless fermions 237

to all diagrams and therefore disables any discrimination
between them. It has the following limiting expressions:

F0 = Θ[ω − vq] − Θ[−ω − vq], |ω ± vq| � T, (9a)

F∞ =
4Tω

ω2 − (vq)2
, |ω ± vq| � T. (9b)

We see clearly from the zero-temperature result of equa-
tion (9a) that the tails are restricted to the regions |ω| �
vq, i.e. beyond the |ω+|−line in agreement with refer-
ences [12] and [17]. For T � |ω|, the tails acquire a linear
T−dependence, cf. equation (9b). At this point we should
keep in mind the existence of a tail due to the single-
pair excitation continuum. As proved in Section 1, this
tail decays exponentially for: ω − v|q| � |q|T/kF . This
implies that the 2-pair excitation continuum dominates
in the range of frequencies: |q|T/kF � ω − v|q| � T at
finite temperatures. This contribution is substantial for
|q| � kF .

(6) We focus on the specific case of zero-temperature.
In the following we assume that m+ = m− = m. We also
consider a point-like interaction, V [q] = V0, even though
all results may be generalized to the case of a long-range
interaction by changing: V0 → V [ω/2]. We find that, as
far as the tails of the DSF are concerned, all groups of
diagrams contribute equally to the correlation function:

S(2)(ω, q) = −�Π
(2)R
R (ω, q)−�Π

(2)R
L (ω, q)−�Π

(2)R
M (ω, q),

(10)
which reads:

S(2)(ω, q) =
V 2

0

64πv3

(
q2

m

)2 1
ω2 − (vq)2

F0

− {ω → −ω, q → −q} , T � |ω|,
(11)

where F0 is given by equation (9a). Contrary to equa-
tions (7a) and (7b) as well as their sum, equation (11)
satisfies equation (6) and agrees with the result of refer-
ences [12] and [17].

(7) We focus now on finite temperatures, i.e. for T �
|ω| (we still have |ω| � vq). Proceeding along the lines of
the zero-temperature case yields:

S(2)(ω, q) =
V 2

0

16πv3

(
q2

m

)2
ω T

(ω2 − (vq)2)2

− {ω → −ω, q → −q} , T � |ω|, (12)

which satisfies equation (6). Temperature therefore gives
rise to frequency-tails proportional to T/ω3 for a point-
like interaction. Such 2-pair excitation tails dominate the
single-pair tail in the range of frequencies: |q|T/kF � ω−
v|q| � T , as has been shown above.

(8) A general equation which interpolates between
equations (11) and (12) reads:

S(2)(ω, q) =
V 2

0

64πv3

(
q2

m

)2 1
ω2 − (vq)2

F(T ; ω, q)

− {ω → −ω, q → −q} , (13)

where the temperature factor is given by equation (8).
(9) Finally, we comment on the approach to the single-

pair continuum: ω → ±vq. As can be seen from equa-
tions (7), in the limit ω → +vq, equation (7a) is singu-
lar whereas equation (7b) vanishes. On the other hand,
in the limit ω → −vq, equation (7b) is singular whereas
equation (7a) vanishes. These singularities are re-enforced
by the divergency of the long-range Coulomb interaction
within the same limits. In all cases, equation (7c) is either
constant or diverges less strongly than the corresponding
relevant chiral part in the presence of a long-range poten-
tial and/or finite temperatures. This implies that, even
though M diagrams are crucial for the f-sum rule to be
satisfied, the chiral diagrams become more relevant (di-
vergent) than them near the singular line.

3 Applications

3.1 Optical conductivity

As a first application we determine the interaction correc-
tion to the tails of the conductivity (the optical conduc-
tivity) beyond the Tomonaga approximation. The latter
is defined as:


σ(ω, q) = e2 ω

q2
S(ω, q). (14)

In the absence of curvature equation (2) shows that the
conductivity consists of Drude peaks at ω = ±vq. In the
following we focus only on the peak at: ω = +vq. Including
curvature from equation (4b) yields:


σ0(ω, q) =

e2v

2
ωτq

vq

[
nF

[
−mv

q
(ω − ω−)

]
− nF

[
−mv

q
(ω − ω+)

]]
,

where τq = m/q2 is the decay-time of the Bloch-
Tomonaga-Luttinger bosons within the free-fermion con-
tinuum. At low temperatures, the Fermi functions re-
duce to step functions and the above conductivity is
non-zero only within the continuum: ω− < ω < ω+

(idem for negative frequencies). At finite temperatures,
T � vq, the Fermi functions become the Boltzmann
functions which yield additional tails to the conductiv-
ity, ∝ exp[−mv(ω − v|q|)/|q|T ]. These tails manifest for:
ω − v|q| � |q|T/mv and are exponentially suppressed be-
yond.

Including interactions, our previous results yield the
interaction-correction to the high-frequency (|ω| � vq)
small-momentum (q � 2kF ) conductivity:


σ(2)(ω, q) =
e2V 2

0

64πv3

q2

m2

ω

ω2 − (vq)2
F(T ; ω, q), (15a)


σ(2)(ω, q) =
e2V 2

0

64πv3

q2

m2

1
ω

, T � ω, (15b)


σ(2)(ω, q) =
e2V 2

0

16πv3

q2

m2

T

ω2
, T � ω. (15c)
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The ω-tails are ∝ 1/ω for ω � T and ∝ T/ω2 for ω �
T . At high temperatures there is therefore a fairly large
regime of frequencies: qT/kF � ω − v|q| � T , where
curvature corrections provide the dominant contribution
to the conductivity.

Such an optical conductivity can be accessed experi-
mentally in semi-conducting quantum wires and organic
charge-density waves, e.g. Bechgaard salts. The latter have
very rich properties due to, e.g. the presence of an inter-
chain coupling: t⊥ and commensurability effects. At high
enough temperatures (above the dimensional crossover:
T � t⊥) the chains decouple and 1D theories may ap-
ply. Based on the proximity to a Mott insulator (due to
Umklapp processes) the authors of references [24] pro-
vided a theory for the optical conductivity of the Bech-
gaard salts related to recent experiments in the field. In
this respect, we would simply like to point out that, if
Umklapp processes are negligible, band-curvature allows
forward-scattering processes to be considered as an alter-
native non-trivial source of optical conductivity, cf. equa-
tion (15).

3.2 Attenuation of coherent excitations

Next we focus on the damping rate, γq of coherent modes.
This will push to its very limits the perturbative approach
that we have implemented. However, we find the obtained
results interesting enough to be reported and we will com-
ment on further developments in the Conclusion, Sec-
tion 5. Experimentally, this attenuation may be accessed
via energy-loss experiments, e.g. see [28].

Within a naive RPA approximation the plasmon dis-
persion relation and the Landau damping rate are defined
with the help of the following equations:

1 = V (q) 
ΠR(q, ωq), (16)

γq = �ΠR(q, ωq) [∂ω
ΠR(q, ωq)]−1, (17)

where: Π = Π0 + ΠR + ΠL + ΠM , V (q) = −e2 ln(|q|a)
and we have assumed that the damping is small, γq � ωq.
With the help of the non-interacting result of equation (4),
the 1D plasmon branch is given by [25]: ωq = v|q|, in
the lowest order in 1/m and falls precisely in the singular
limit of our perturbation theory, as we already know from
previous sections. A non-trivial re-summation procedure
is necessary in order to rigorously take into account of the
effect of interactions on this damping rate (recall that for
free fermions the damping rate is simply given by: γq =
q2/m). This is a basic difference with higher dimensions
where one can straightforwardly account for the damping
within perturbation theory, cf. [22,23].

This problem was the focus of the recent literature,
see references [15–17]. We will focus on a slightly different
issue by considering a coherent mode of frequency Ωq lying
deep within the 2-pair excitation spectrum, Ωq � ω+. In
the limit where Ωq → ωq this becomes a proper mode
of the system and satisfies equation (16). Because of the
2-pair continuum some energy of this mode is absorbed
by the system and leads to its attenuation according to

+ +

+ +

=

=

Fig. 4. Self-energy diagrams for spinless fermions interact-
ing with the g2 process. The second-order diagrams are usual
Luttinger-liquid diagrams. The next three diagrams are of
fourth-order in interaction among the fermions. They are built
from the polarization parts of the previous section and yield
the lowest non-trivial curvature corrections: second order in
1/m to, e.g. the single-particle scattering rate due to electron-
electron interactions.

equation (17) with ωq = Ωq, �ΠR(ω, q) = −S(2)(ω, q) of
equation (13) and 
ΠR(ω, q) = 
ΠR0 of equation (4a).
The attenuation of this high-frequency coherent mode due
to the 2-pair excitation continuum is then given by:

γq =
(

V (q)
v

)2 ( q

mv

)2

Ωq F(T, Ωq), (18)

up to a numerical factor and in the lowest order in 1/m.
At zero temperature, equation (18) yields:

γq =
(

V (q)
v

)2 ( q

mv

)2

Ωq, T � Ωq. (19)

Including temperature, equation (18) yields:

γq =
(

V (q)
v

)2 ( q

mv

)2

T, T � Ωq, (20)

which does not depend on Ωq and dominates the damp-
ing due to the finite T single-pair excitation continuum
for: |q|T/kF � Ωq � T . A simple formula interpolating
between equations (19) and (20) reads:

γq =
(

V (q)
v

)2 ( q

mv

)2

max{ T, Ωq }. (21)

Notice that if the mode is acoustic: Ωq ∼ |q|, then the
attenuation rate crosses over from γq ∼ |q|3 at small tem-
peratures to γq ∼ q2 at high temperatures.

3.3 Electron-electron scattering rate

Finally, we determine curvature corrections to the
electron-electron scattering rate. It corresponds to the
imaginary part of the self-energy diagrams represented in
Figure 4 on the Fermi shell, τ−1

± (ε) ≡ �Σ±∓(ε, k = 0).
Notice that, because it is a single-particle property, the
scattering rate does not depend on the mixed compo-
nent of the polarization part. The second order self-energy
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parts are well-defined in the massless case and yield:
τ

(2)−1
± = −(V0/v)2 max{|ε|, 2T }, for a point-like interac-

tion. The linear dependence on energy is known, e.g. see
reference [26], and is another signature of the absence of
fermionic quasi-particles at low energies [27]. From equa-
tions (7a) and (7b) we may now access corrections to this
scattering rate which go beyond the Tomonaga approxi-
mation: τ−1 = τ (2)−1 + τ (4)−1 + .... The lowest-order cor-
rections are of the fourth-order in interaction and second-
order in mass:

τ (4)−1 = −V 4
0

v4

T 3

ε2F
, (22)

up to a numerical factor. At low-energies, equation (22)
is small in comparison with the Luttinger-liquid contribu-
tion: τ (2)−1 ∼ T . This result is correct up to the fact that
we only know the tails of the DSF. Notice that this correc-
tion does not follow the usual, Fermi-liquid-like, scaling:
T 2/εF . However, the cubic dependence on energy seems
natural because the mass-dependence of equation (22) —
recall that: εF = mv2 – originates from the polarization
parts appearing in Figure 4, i.e. the ones analyzed in detail
in Section 2. From dimensional arguments we understand
the cubic energy-dependence as the only possible scaling
to compensate for the square of the Fermi energy appear-
ing from the tails of the polarization parts.

4 Diagrammatic calculations

In this section we provide the interested reader with some
details regarding the diagrammatic calculations. All the
calculations are based on the fact that the bare Green’s
function, G0, is the one of equation (3). Moreover, one
should keep in mind the loop cancellation theorem of
Dzyaloshinskii and Larkin which has also been defined in
the introduction. This theorem is equivalent to Furry’s
theorem in quantum electro-dynamics (QED) so what we
are doing in the language of QED is to calculate non-
trivial radiative corrections which are unique to solid-state
fermions.

The calculation is then divided into two parts: the first
part concerns the “chiral” classes (R and L) and the sec-
ond part concerns the “mixed” class (M).

4.1 Chiral (R and L) diagrams with curvature

A convenient starting point is to work with the sums of
diagrams which combine to vanish in the massless limit,
i.e. R1 + R2 + R3 (idem for L diagrams). Re-arranging
the Green’s functions in the expressions of such diagrams
splits them into simpler expressions and generates a sys-
tematic expansion in 1/m.

The expressions for the 3 diagrams are the following:

Π
(2)
R1 (iω, q) =

1
β2

∑
ε,ω′

∫
dkdq′

(2π)2
|V [q′]|2 Π0

−(iω′, q′)G0
+(iε, k)

× [
G0

+(i(ε − ω), k − q)
]2

G0
+(i(ε − ω + ω′), k − q + q′),

Π
(2)
R2 (iω, q) =

1
β2

∑
ε,ω′

∫
dkdq′

(2π)2
|V [q′]|2 Π0

−(iω′, q′)

× [
G0

+(iε, k)
]2

G0
+(i(ε − ω), k − q)G0

+(i(ε + ω′), k + q′),

Π
(2)
R3 (iω, q) =

1
β2

∑
ε,ω′

∫
dkdq′

(2π)2
|V [q′]|2 Π0

−(iω′, q′)

× G0
+(iε, k)G0

+(i(ε − ω), k − q)G0
+(i(ε + ω′), k + q′)

× G0
+(i(ε − ω + ω′), k − q + q′),

where the double integrals over momentum show that
these are 2-loop contributions. The expression for R3 may
be further split into three contributions because of the
following identity:

G0
+(i(ε + ω′))G0

+(i(ε − ω + ω′)) =
1

iω − q
[G0

+(i(ε − ω + ω′)) − G0
+(i(ε + ω′))

+(ξ(+)
k+q′ − ξ

(+)
k+q′−q − q)G0

+(i(ε − ω + ω′))G0
+(i(ε + ω′))]

where the last term is a clear manifestation of the non-
linear spectrum. This yields:

Π
(2)
R3 (iω, q) =

1
iω − q

1
β2

∑
ε,ω′

∫
dkdq′

(2π)2
|V [q′]|2 Π0

−(iω′, q′)

×[G0
+(iε)G0

+(i(ε − ω))G0
+(i(ε − ω + ω′))

−G0
+(iε)G0

+(i(ε − ω))G0
+(i(ε + ω′))

+(ξ(+)
k+q′ − ξ

(+)
k+q′−q − q)

×G0
+(iε)G0

+(i(ε − ω))G0
+(i(ε − ω + ω′))G0

+(i(ε + ω′)) ].

We display this expression in a symmetric form (change
of variables: ε → ε − ω, k → k − q in the first term and
ε+ω′ → ε, k+q′ → k in the last with ω′ → −ω′, q′ → −q′):

Π
(2)
R3 (iω, q) =

1
iω − q

1
β2

∑
ε,ω′

∫
dkdq′

(2π)2
|V [q′]|2 Π0

−(iω′, q′)

× [G0
+(iε)G0

+(i(ε + ω))G0
+(i(ε + ω′))

− G0
+(iε)G0

+(i(ε − ω))G0
+(i(ε + ω′))

+
ξ
(+)
k − ξ

(+)
k−q − q

2
G0

+(iε)G0
+(i(ε − ω))

× G0
+(i(ε − ω + ω′))G0

+(i(ε + ω′))

+
ξ
(+)
k+q − ξ

(+)
k − q

2
G0

+(iε)G0
+(i(ε + ω))G0

+

× (i(ε + ω + ω′))G0
+(i(ε + ω′))].

Notice that the change ω′ → −ω′, q′ → −q′ does not
affect the interaction potential. Also, the last term has
been symmetrized.
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Π
(2)
R (iω, q) =

1

β2

∑
ε,ω′

∫
dkdq′

(2π)2
|V [q′]|2 Π0

−(iω′, q′)[G0
+(iε)G0

+(i(ε + ω))G0
+(i(ε + ω′))

×
[
G0

+(i(ε − ω)) +
1

iω − q

]
+ G0

+(iε)G0
+(i(ε − ω))G0

+(i(ε + ω′))
[
G0

+(i(ε + ω)) − 1

iω − q

]

+ (2ξ
(+)
k − ξ

(+)
k+q − ξ

(+)
k−q)

[
G0

+(iε)
]2

G0
+(i(ε − ω))G0

+(i(ε + ω))G0
+(i(ε + ω′))

+
ξ
(+)
k − ξ

(+)
k−q − q

2(iω − q)
G0

+(iε)G0
+(i(ε − ω))G0

+(i(ε − ω + ω′))G0
+(i(ε + ω′))

+
ξ
(+)
k+q − ξ

(+)
k − q

2(iω − q)
G0

+(iε)G0
+(i(ε + ω))G0

+(i(ε + ω + ω′))G0
+(i(ε + ω′))].

After a change of variables in R1 (ε−ω → ε, k−q → k),
the sum of R1 and R2 may be re-written as:

Π
(2)
R1 (iω, q) + Π

(2)
R2 (iω, q) =

1
β2

∑
ε,ω′

∫
dkdq′

(2π)2
|V [q′]|2

× Π0
−(iω′, q′)

[
G0

+(iε)
]2

G0
+(i(ε + ω′))

× {
G0

+(i(ε − ω)) + G0
+(i(ε + ω))

}
.

This expression shows that diagram R2 is equal to diagram
R1 upon changing ω → −ω and q → −q. This can be re-
written as:

Π
(2)
R1 (iω, q) + Π

(2)
R2 (iω, q) =

1
β2

∑
ε,ω′

∫
dkdq′

(2π)2

× |V [q′]|2 Π0
−(iω′, q′)

× [2G0
+(iε)G0

+(i(ε − ω))G0
+(i(ε + ω))G0

+(i(ε + ω′))

+ (2ξ
(+)
k − ξ

(+)
k+q − ξk−q)

[
G0

+(iε)
]2

G0
+(i(ε − ω))

× G0
+(i(ε + ω))G0

+(i(ε + ω′))].

The sum of all three diagrams:

Π
(2)
R (iω, q) = Π

(2)
R1 (iω, q) + Π

(2)
R2 (iω, q) + Π

(2)R3
R3 (iω, q),

(23)

yields:

see equation above

This is further simplified as:

Π
(2)
R (iω, q) =

1
β2

∑
ε,ω′

∫
dkdq′

(2π)2
|V [q′]|2 Π0

−(iω′, q′)

×
[

ξ
(+)
k+q − ξ

(+)
k−q − 2q

iω − q
G0

+(iε)G0
+(i(ε − ω))

× G0
+(i(ε + ω))G0

+(i(ε + ω′))

+ (2ξ
(+)
k − ξ

(+)
k+q − ξ

(+)
k−q)

[
G0

+(iε)
]2

× G0
+(i(ε − ω))G0

+(i(ε + ω))G0
+(i(ε + ω′))

+
ξ
(+)
k − ξ

(+)
k−q − q

2(iω − q)
G0

+(iε)G0
+(i(ε − ω))

× G0
+(i(ε − ω + ω′))G0

+(i(ε + ω′))

+
ξ
(+)
k+q − ξ

(+)
k − q

2(iω − q)
G0

+(iε)G0
+(i(ε + ω))

× G0
+(i(ε + ω + ω′))G0

+(i(ε + ω′))

]
.

In the case of a quadratic spectrum (ξ(+)
k = vk + k2/2m+

where we explicitly introduce the right movers mass m+):

Π
(2)
R (iω, q) =

q

m+

1
β2

∑
ε,ω′

∫
dkdq′

(2π)2
|V [q′]|2 Π0

−(iω′, q′)

×
[

2k

iω − q
G0

+(iε)G0
+(i(ε − ω))G0

+(i(ε + ω))G0
+(i(ε + ω′))

− q
[
G0

+(iε)
]2

G0
+(i(ε − ω))G0

+(i(ε + ω))G0
+(i(ε + ω′))

+
2k − q

4(iω − q)
G0

+(iε)G0
+(i(ε − ω))

× G0
+(i(ε − ω + ω′))G0

+(i(ε + ω′))

+
2k + q

4(iω − q)
G0

+(iε)G0
+(i(ε + ω))

× G0
+(i(ε + ω + ω′))G0

+(i(ε + ω′))

]
.

These four terms give a non-zero contribution only in the
case of a non-linear spectrum. Notice that this is valid



S. Teber: Tails of the DSf of 1D spinless fermions 241

for all temperatures and for all interaction ranges (except
for a change of sign which does not affect the interac-
tion the variables ω′ and q′ have not been shifted during
the splitting procedure). Further use of the splitting pro-
cedure shows that the lowest non-zero order is in 1/m2.
The corresponding expression for the sum of the three di-
agrams is:

Π
(2)
R (iω, q) =

1
(iω − q)2

q2

m+

1
β2

∑
ε,ω′

∫
dkdq′

(2π)2
|V [q′]|2

× Π0
−(iω′, q′)[G0

+(iε)]2G0
+(i(ε + ω′))

+
1

(iω − q)2
q2

m2
+

1
β2

∑
ε,ω′

∫
dkdq′

(2π)2
|V [q′]|2 Π0

−(iω′, q′)

+ [2k2 G0
+(iε)G0

+(i(ε − ω))G0
+(i(ε + ω))G0

+(i(ε + ω′))

− kq (iω − q)
[
G0

+(iε)
]2

G0
+(i(ε − ω))

× G0
+(i(ε + ω))G0

+(i(ε + ω′))

− [2k − q]q
4

[G0
+(iε)]2G0

+(i(ε − ω))G0
+(i(ε + ω′))

+
[2k + q]q

4
[G0

+(iε)]2G0
+(i(ε + ω))G0

+(i(ε + ω′))

+
[2k − q] [2(k + q′) − q]

8
G0

+(iε)G0
+(i(ε − ω))

× G0
+(i(ε − ω + ω′))G0

+(i(ε + ω′))

+
[2k − q] [2(k + q′) − q]

8
G0

+(iε)G0
+(i(ε + ω))

× G0
+(i(ε + ω + ω′))G0

+(i(ε + ω′))].

The above equations are valid to all orders in 1/m and
show that the first order correction is in 1/m2 (the first
term is a pure mass-shell singularity and therefore van-
ishes in the limit w �= q we are interested in). The fact that
1/m2 is the first relevant order agrees with the correspond-
ing bosonic cubic field theory, see e.g. [11]. Moreover the
generation of 1/m factors from our splitting procedure is
due only to a single spicy of fermions, i.e. re-arrangement
of Green’s functions of right movers for the above R-
diagrams (left movers for the corresponding L-diagrams).
The mass appearing in the above expansion is therefore
the one of right-movers, m ≡ m+ (similarly the mass ap-
pearing in L-diagrams is the one of left-movers, m ≡ m−).

To proceed further from the above equation, the eas-
iest task is to compute the leading order in 1/m of the
sum of R-diagrams. As has been discussed in Section 2,
this amounts to focus on the tails of the density-density
correlation function. For this purpose, we take the Green’s
functions in factor of the 1/m2 terms as the massless ones.
Notice that this implies that the tails of R-diagrams (resp.
L-diagrams) correspond to the scattering or a curved
right-mover (resp. left-mover) density fluctuation on a lin-
earized left-mover (resp. right-mover) density fluctuation.
The final expression for the imaginary part of the polar-

ization operator is:

�Π
(2)R
R (ω, q) =

−1
32πv2(ω − vq)3

(
q

m+

)2 ∣∣∣∣V
(

ω − vq

2

)∣∣∣∣
2

×
∫

dkdk′
[
(2k − q) [nF (vk − vq) − nF (vk − vq + ω)]

×
[
nF (−vk′) − nF

(
−vk′ +

ω − vq

2

)]

×
[
nB

(
−ω − vq

2

)
+ nF

(
vk +

ω − vq

2

)]

+ (2k + q) [nF (vk + vq) − nF (vk + vq − ω)]

×
[
nF (−vk′) − nF

(
−vk′ − ω − vq

2

)]

×
[
nB

(
ω − vq

2

)
+ nF

(
vk − ω − vq

2

) ]]
,

�Π
(2)R
L (ω, q) =

+1
32πv2(ω + vq)3

(
q

m−

)2 ∣∣∣∣V
(

ω + vq

2

)∣∣∣∣
2

×
∫

dkdk′
[
(2k − q) [nF (−vk + vq) − nF (−vk + vq + ω)]

×
[
nF (vk′) − nF

(
vk′ +

ω + vq

2

)]

×
[
nB

(
−ω + vq

2

)
+ nF

(
−vk +

ω + vq

2

)]

+ (2k + q) [nF (−vk − vq) − nF (−vk − vq − ω)]

×
[
nF (vk′) − nF

(
vk′ − ω + vq

2

) ]

×
[
nB(

ω + vq

2
) + nF

(
−vk − ω + vq

2

) ]]
,

were we included both the contributions of R diagrams
(�Π

(2)R
R (ω, q)) and L diagrams (�Π

(2)R
L (ω, q)). These are

our expressions for the tails of the sum of R and L dia-
grams, in the lowest order in 1/m, in second order in inter-
actions, for any interaction range and at all temperatures.
Notice that the integrals over wave-numbers are converg-
ing and that the overall expressions have the correct sym-
metry. Integrating over momentum yields equations (7a)
and (7b). These were further discussed in Section 2.

4.2 Mixed (M1 and M2) diagrams with curvature

We focus now on mixed diagrams, i.e. diagrams M1 and
M2, with curvature. As for the chiral diagrams we con-
sider the combination M1 + M2. Proceeding along the
arguments for the vanishing of such combination in the
massless case we generate a systematic expansion in 1/m.
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The expressions of the mixed diagrams are:

Π
(2)
M1(iω, q) =

1
β3

∑
ε1,ε2,ω′

∫
dk1dk2dq′

(2π)3
V [q′]V [−q − q′]

× G0
+(iε1, k1)G0

+(i(ε1 + ω′), k1 + q′)G0
+(i(ε1 − ω), k1 − q)

× G0
−(iε2, k2)G0

−(i(ε2 + ω′), k2 + q′)G0
−(i(ε2 − ω), k2 − q),

Π
(2)
M2(iω, q) =

1
β3

∑
ε1,ε2,ω′

∫
dk1dk2dq′

(2π)3
V [q′]V [−q − q′]

× G0
+(iε1, k1)G0

+(i(ε1 − ω − ω′), k1 − q − q′)

× G0
+(i(ε1 − ω), k1 − q)

× G0
−(iε2, k2)G0

−(i(ε2 + ω′), k2 + q′)G0
−(i(ε2 − ω), k2 − q),

where V [q] is the interaction potential and the bare
Green’s function are curved. The triple integrals over mo-
mentum show that these are 3-loop contributions.

Performing the shifts: ε1 → ε1 + ω + ω′ and k1 →
k1 + q + q′ in M2, adding M1 and M2 with the left three-
legged loop factorized yields:

Π
(2)
M (iω, q) = 2Π

(2)
M1(iω, q) + 2Π

(2)
M2(iω, q)

=
2
β3

∑
ε1,ε2,ω′

∫
dk1dk2dq′

(2π)3
V [q′]V [−q − q′]

× G0
−(iε2, k2)G0

−(i(ε2 + ω′), k2 + q′)G0
−(i(ε2 − ω), k2 − q)

× [G0
+(iε1, k1)G0

+(i(ε1 + ω′), k1 + q′)G0
+(i(ε1 − ω), k1 − q)

+ G0
+(iε1, k1)G0

+(i(ε1 + ω + ω′), k1 + q + q′)

× G0
+(i(ε1 + ω′), k1 + q′)],

where the factor of 2 has been taken into account (M1 and
M2 appear twice). We implement the splitting procedure
by setting:

G0
+(iε1)G0

+(i(ε1 − ω)) =
1

iω − vq

[
G0

+(i(ε1 − ω) − G0
+(i(ε1)

−
(

q2

2m+
− k1q

m+

)
G0

+(iε1)G0
+(i(ε1 − ω))

]
,

and:

G0
+(i(ε1 + ω′))G0

+(i(ε1 + ω′ + ω)) =
1

iω − vq
[G0

+(i(ε1 + ω′)) − G0
+(i(ε1 + ω′ + ω))

+
(

q2

2m+
+

(k1 + q′)q
m+

)
G0

+(i(ε1+ω′))G0
+(i(ε1 +ω′+ω))],

where one may recover initial notations by: G0
+(iε) ≡

G0
+(iε, k). This yields:

Π
(2)
M (iω, q) =

1
iω − vq

1
β3

∑
ε1,ε2,ω′

∫
dk1dk2dq′

(2π)3
V [q′]V [−q − q′]

× G0
−(iε2)G0

−(i(ε2 + ω′))G0
−(i(ε2 − ω))

×
[
−

(
q2

2m+
− k1q

m+

)
G0

+(iε1)

× G0
+(i(ε1 − ω))G0

+(i(ε1 + ω′))

+
(

q2

2m+
+

(k1 + q′)q
m+

)
G0

+(iε1)G0
+(i(ε1 + ω′))

× G0
+(i(ε1 + ω′ + ω))

]
,

whereby we recover that the combination vanishes in the
massless limit. Re-implementing the procedure to the last
expression and after some lengthy algebraic manipulations
the sum of M diagrams reads:

Π
(2)
M (iω, q) =

1
(iω − vq)2(iω + vq)

q2

2m+m−
1
β3

×
∑

ε1,ε2,ω′

∫
dk1dk2dq′

(2π)3

×
[
− V [q′]V [q′ + q][2k1−q][2k2−q]G0

+(iε1)G0
+(i(ε1+ω′))

× G0
−(iε2)G0

−(i(ε2 − ω))G0
−(i(ε2 + ω′))

+ V [q′]V [q′ − q][2k1 + q][2k2 + q]G0
+(iε1)G0

+(i(ε1 + ω′))

× G0
−(iε2)G0

−(i(ε2 + ω))G0
−(i(ε2 + ω′))

− V [q′]V [q′ + q][2k1 − q][2k2 + q]G0
+(iε1)G0

+(i(ε1 + ω′))

× G0
−(iε2)G0

−(i(ε2 + ω))G0
−(i(ε2 − ω′))

+ V [q′]V [q′ − q][2k1 + q][2k2 − q]G0
+(iε1)G0

+(i(ε1 + ω′))

× G0
−(iε2)G0

−(i(ε2 − ω))G0
−(i(ε2 − ω′))

]
.

This expression satisfies the basic symmetries of the Mat-
subara polarization operator. Note that it is exact to all
orders in 1/m as the bare Green’s functions sitting in the
integrand are curved. It shows that the mixed diagrams
have an expansion starting as 1/m+m− so that curva-
ture is crucial for both right- and left-movers, even for
the tails. This is the root of our terminology (mixed) for
such diagrams and a basic difference between them and
the so-called chiral contributions R and L.

The tails are then easily derived by taking the Green’s
functions as the massless ones. This also enables further
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re-arrangements of the last equation which reduces it to:

Π
(2)
M (iω, q) =

1
(iω − vq)2(iω + vq)

q2

m+m−

1
β3

×
∑

ε1,ε2,ω′

∫
dk1dk2dq′

(2π)3
[−V [q′]

× V [q′ + q][2k1 − q][2k2 − q]G0
+(iε1)G0

+(i(ε1 + ω′))

× G0
−(iε2)G0

−(i(ε2 − ω))G0
−(i(ε2 + ω′))

+ V [q′]V [q′ − q][2k1 + q][2k2 + q]G0
+(iε1)G0

+(i(ε1 + ω′))

× G0
−(iε2)G0

−(i(ε2 + ω))G0
−(i(ε2 + ω′))],

where the Green’s functions are those of fermions with
linear spectrum.

Performing the integration over frequencies and going
to the retarded function yields:

�Π
(2)R
M (ω, q) =

1
8πv(ω2 − (vq)2)2

q2

m+m−

× V

[
ω + vq

2

]
V

[
ω − vq

2

] ∫
dk1dk2

[
+ [2k1

− q][2k2 − q]
[
nF [vk1] − nF

[
vk1 − ω + vq

2

]]

× [nF [−vk2 + vq] − nF [−vk2 + vq + ω]]

×
[
nB

[
−ω + vq

2

]
+ nF

[
−vk2 +

ω + vq

2

]]

− [2k1 + q][2k2 + q]
[
nF [vk1] − nF

[
vk1 +

ω + vq

2

]]

× [nF [−vk2 − vq] − nF [−vk2 − vq + ω]]

×
[
nB

[
+

ω + vq

2

]
+ nF

[
−vk2 − ω + vq

2

]] ]
.

Performing the momentum integrations yields equa-
tion (7c) which was further discussed in Section 2.

5 Conclusion

As a conclusion, we have developed a diagrammatic ap-
proach to the problem of the tails of the dynamic struc-
ture factor of 1D spinless fermions in clean quantum wires.
Such tails correspond to the multi-pair excitation contin-
uum of the 1D liquid. The main difficulty that we have
managed to overcome was in rigorously taking into ac-
count of both interactions and band-curvature in the low-
est meaningful order of perturbation theory: second order
in interactions, i.e. 2-pair excitation continuum, and sec-
ond order in curvature.

Our methodology has revealed three classes of di-
agrams, see Figure 3: two “chiral” (R and L) classes
which bring divergent contributions in the limits ω →
±vq, i.e. near the single-pair excitation continuum, and

a “mixed” (M) class (so-called Aslamasov-Larkin or
Altshuler-Shklovskii type diagrams) which is crucial for
the f-sum rule to be satisfied. These diagrams describe
the lowest order non-trivial microscopic scattering mech-
anisms taking place within the multi-pair continuum, i.e.
at the 2-pair level. Such mechanisms are beyond the
reach of the Tomonaga-Luttinger model or, equivalently,
the corresponding diagrams appear as non-cancelable by
the Dzyaloshinskii-Larkin theorem. This is summarized
by equations (7) which display the expression of the
high-frequency polarization-part for each class. The cor-
responding DSF is given by equation (13). The zero-
temperature limit, equation (11), agrees with the results
of references [12] and [17]. At non-zero temperatures, the
2-pair excitation contribution, equation (12), dominates
over the single-pair excitation contribution over the range
of frequencies: |q|T/kF � ω ± vq � T (substantial for:
q � kF ). Our results are more general than the ones of
reference [12] in the sense that we have added the effects
of temperature and long-range interactions. In the same
respect they appear complementary to the results of ref-
erence [17] which did not consider temperature effects but
where interactions were taken into account to all orders.

These results further allowed us to compute some ob-
servables which may be of relevancy to experiments in
the field (tunneling experiments, energy loss experiments,
etc), e.g. see [28]. In particular, we have shown that the 2-
pair excitation continuum gives rise to an optical fermion
conductivity equation (15a); this may be an interesting al-
ternative source of conduction besides the proximity to a
Mott insulating phase, i.e. Umklapp processes, considered
in the literature [24]. Moreover, pushing our perturbation
theory to its limits we have estimated the attenuation rate
of a coherent mode, Ωq, due to the 2-pair excitation con-
tinuum, equations (18–20). Our results show a crossover
from γq ∼ |q|3, cf. equation (19), at low temperatures to
γq ∼ q2, cf. equation (20), at high temperatures when the
mode is acoustic, Ωq ∼ |q|. The q-dependence of our T = 0
result seems to agree with reference [15] — even though
these authors were closer to the singular line vq than us —
but not with reference [11]. It also seems to disagree with
the most recent contributions: references [16] and [17]. Fi-
nally, we have determined curvature corrections to the
electron-electron scattering rate, equation (22). This ex-
ercise has revealed interesting diagrams, the fourth-order
diagrams in interaction among the fermions shown in Fig-
ure 4, responsible for such corrections. Such diagrams con-
tain some of the polarization parts of Figure 3 and there-
fore describe scattering mechanisms which are beyond the
reach of the Tomonaga-Luttinger model. Their peculiar-
ity is that they all contain a cut with 5 particle-lines. This
implies that these fourth-order corrections correspond to
three-body processes [29] among fermions in the clean
quantum wire. From the tails of the polarization parts
such corrections scale as: T 3/ε2F , and sublead the linear in
T Luttinger-liquid scattering rate.

The above results are all related to the tails of the DSF.
In relation with the recent references [15–17] we leave it
for future work to consider the singular limit, ω → v|q|.
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